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Abstract
Nepali GEC plays a crucial role in improving the quality of written Nepali text. An annotated
corpus of Nepali sentences along with sentences generated by augmenting correct sentences
to generate a diverse range of grammatical errors are used for training. The augmentation
is done by identifying the Part of Speech tag and root words of verbs and adjectives us-
ing Lemmatizer. This study uses BERT models MuRIL and NepBERTa to fine-tune for
the GED task of Nepali text. The models performances were assessed using accuracy and
training/validation loss, providing a comprehensive assessment of the model’s effectiveness
in error detection for the Nepali Language which forms the crucial step for GEC. The GEC
system developed here, makes use of MLM models of both MuRIL and NepBERTa to predict
the mask tokens in input erroneous sentence and thus gives the suggestions which are filtered
by the GED model.

Keywords: Nepali Grammar Correction, Nepali Grammar Error Detection, Nepali GEC
Corpus
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1. Introduction
The Nepali language is the official language of Nepal, spoken by millions of people as their
native tongue. Proper grammar usage is essential for effective communication and written
expression in Nepali. However, due to the complexity of Nepali grammar rules, it is common
to encounter grammatical errors in written texts, which can hinder comprehension and nega-
tively impact the quality of communication. Nepali is written in the Devanagari script. The
same script is used for Hindi, Marathi and Sanskrit. There are 13 vowels and 36 consonants
in the Nepali language. [1].

With our Nepali Grammatical correction system, we aim to provide a valuable tool for
individuals and organizations to improve the quality and accuracy of their written Nepali
communication sentence by sentence. This system will aid in enhancing language profi-
ciency, facilitating effective formal communication, and supporting various domains such as
education, administration, and content creation.

Our system analyzes Nepali text input to identify common grammatical errors such as
incorrect verb conjugations, sentence structure issues, homonym and punctuation issues. In-
stead of providing immediate corrections, the system initially detects errors and subsequently
offer suggestions and corrections to rectify these issues. This approach assists users in pro-
ducing grammatically accurate Nepali text based on the errors discussed and also leverages
the usage of masked language models in suggesting correct sentences.

Addressing the development of such a system posed several challenges, primarily due
to the absence of a comprehensive and representative dataset for training the model, the
necessity to adapt existing natural language processing (NLP) techniques to the unique
characteristics of the Nepali language, and the complexities inherent in Nepali grammar
rules. Consequently, our focus shifted towards resolving some of the grammatical issues
encountered during the project’s development phase. By addressing these specific errors,
we aimed to demonstrate that if the model performs well on these instances, it should also
effectively handle other types of grammatical errors in Nepali text.

The successful implementation of this Nepali grammar correction system will not only
contribute to improved written communication but also promote the preservation and under-
standing of the Nepali language. By enabling users to produce accurate and error-free Nepali
text, we aim to enhance language proficiency and foster effective formal communication in
various domains.
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1.1 Background
The Nepali language is an Indo-Aryan language and also the official language of Nepal and
is widely spoken by millions of people, plays a crucial role in communication, education,
administration and also serves as the lingua franca for the natives in Nepal who do not
speak Nepali as their first language. The term ”Nepali” derived from the name of the country
Nepal, was formally adopted by the Government of Nepal in 1933. This occurred when the
Gorkha Bhasa Prakashini Samiti, a government institution established in 1913 (B.S. 1970) to
promote the Gorkha language, changed its name to Nepali Bhasa Prakashini Samiti (Nepali
Language Publishing Committee) in 1933 (B.S. 1990). This organization, now known as
Sajha Prakashan, has since been dedicated to the advancement of the Nepali language.[2]
Part 1 of the Nepali Constitution addresses the designation of the official language of the
Federal Democratic Republic of Nepal[3]. According to Article 6, the official language of
the nation encompasses all languages spoken as mother tongues in Nepal. Article 7 specifies
that the official language of Nepal is Nepali, written in the Devanagari script as नेपाली.[3]

However, Nepali grammar is complex and prone to errors because of its inherent complex-
ities.[1] These errors can have a significant impact on the clarity and effectiveness of written
communication. Traditionally, grammar correction has relied on manual proofreading, which
is time-consuming and subject to human limitations. Therefore, there is a growing need for
automated systems that can detect and correct grammar errors in Nepali text.

1.2 Problem Statement
The problem we aimed to address in this major project is the lack of an efficient and reliable
Nepali Grammatical Error Detection and Correction system. There has been a lot of research
and development in the field of grammatical error correction in some languages, especially
English. So, existing grammar correction tools primarily focus on major languages such
as English and provide a high level of accuracy for the languages like English. However,
research and development of Grammatical Error Correction for low-resource language such
as the Nepali language is very scarce. So their effectiveness in handling Nepali grammar
errors is very limited. We expect for our GEC system to detect the grammatical error in
Nepali text and provide correct alternatives.
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1.3 Objectives
The primary objective of this major project is to develop a robust Nepali Grammatical Error
Detection and Correction system based on neural networks. Our project aims to:

1. Explore and analyze the existing approaches and techniques in the field of NLP for
grammatical error detection and correction.

2. Design and build Nepali Grammatical Error Detection and Correction System.

3. Evaluate the performance of the developed systems using various metrics.

3



1.4 Scope
The scope of this project encompasses the development of a prototype Nepali Grammatical
Error Detection and Correction system. The system accepts Nepali text as input, detects
whether the input sentence is grammatically correct or not, and provides suggestions for
corrections. It focuses on correcting errors related to grammar rules, syntax, and sentence
structure. However, semantic errors and context-based corrections are beyond the scope of
this project although they can be added in the future.
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2. Literature Review
The Nepali language is categorized as a ”low-resource” language, indicating that there has
been limited research conducted in the field of Nepali Language Processing. Consequently,
there is a dearth of comprehensive studies and resources available for this language. The
amount of work that has been done in Nepali Natural Language Processing is very scarce.
Out of all the work that has been done, most of them are in word classification, Part-of-speech
(POS) tagging, morphological analysis, sentiment analysis, and word sense disambiguation.

Being a descendant of the Indo-European language and being written in Devnagari script,
the Nepali language inherits its properties from languages like Sanskrit, etc. The distinction
between inflection and derivation plays a vital role in linguistics and is very significant in
Nepali. That being said, Nepali grammar is composed of morphology and syntax [4]. In
the Nepali language, the sentence is formed in Subject + Object + Verb (SOV) order.
So, the morphology of the Nepali language is agglutinating in nature. That said, the Nepali
language has a huge population but the amount of resources and work on the Nepali language
is significantly less.

The amount of research and work that has been done in the field of Nepali Grammar
Error Correction is very few. There have been some systems that can check the spelling but
there is no system that can check the Nepali grammar end to end. That’s why, a Nepali
Grammar Error Detection and Correction system is important.

2.1 Related Work
Significant advancements have been made in the field of Natural Language Processing (NLP),
although it’s important to note that the progress in Nepali NLP specifically has been rela-
tively limited. Despite this, there have been notable achievements, including the develop-
ment of important linguistic tools and resources. The process of stemming, a pivotal facet
of language processing, has been tackled through the conception of rule-based, statistical,
and hybrid stemmers tailored for the Nepali language [5]. Moreover, noteworthy headway
in Nepali NLP extends to the development of essential linguistic resources. In addition to
stemmers, endeavors have culminated in the creation of Nepali-specific word embeddings.
Furthermore, POS taggers have been devised for the Nepali language, constituting indispens-
able preprocessing steps for substantial Nepali NLP undertakings, including the construction
of a Nepali grammatical error correction system which, despite the progress in various as-
pects, remains uncharted territory in the domain.
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The genesis of Grammar Error Correction (GEC) systems can be traced through various
languages, including English, German, and more. However, the emergence of GEC gained
substantial recognition with the organization of the CoNLL-2014 shared task.[6] Prior to
this event, despite efforts in other languages, the comprehensive development and attention
to GEC were notably catalyzed by the CoNLL-2014 initiative.[6]

Research on GEC for low-resource languages presents unique challenges due to the
scarcity of annotated data and limited linguistic resources. Despite these difficulties, several
studies have focused on addressing GEC in low-resource language settings, aiming to make
writing assistance tools accessible to a wider range of non-native speakers.

One approach explored in low-resource GEC is the utilization of limited parallel data
and unsupervised pre-training. Researchers have adapted neural encoder-decoder models
and leveraged unsupervised learning techniques to overcome the lack of annotated data.
By utilizing the available parallel data and incorporating unsupervised pre-training, these
approaches have shown promising results in improving GEC accuracy for low-resource lan-
guages[7]. For certain types of error correction, a character-level transformer [8] could be
used to capture subtle character-level patterns and correct errors like misspellings and typos
after which they could be fed to the word level transformers for correcting a much rather
complex grammatical problem given enough resources and data [9].

Another direction of research in low-resource GEC involves transfer learning. Researchers
have investigated the transferability of the language models trained on high-resource lan-
guages to low-resource languages. By leveraging the pre-trained models from high-resource
languages, these approaches aim to transfer knowledge and improve GEC performance in low-
resource settings. Transfer learning techniques have demonstrated effectiveness in leveraging
the linguistic similarities across languages to enhance the accuracy of GEC for low-resource
languages like Nepali Language[10].

Unsupervised learning techniques have also been explored in the context of low-resource
GEC. By relying on monolingual data, researchers have developed unsupervised neural ma-
chine translation (NMT) methods to tackle GEC for low-resource languages. These ap-
proaches leverage self-training and iterative refinement to improve the performance of GEC
systems without relying on parallel annotated data. Unsupervised learning methods have
shown promising results in achieving competitive accuracy in low-resource GEC, even in the
absence of parallel training data [11].

Furthermore, multilingual pre-training has emerged as a promising direction for low-
resource GEC. By leveraging the linguistic relationships between multiple languages, re-
searchers have utilized multilingual pre-training to enhance the performance of GEC systems
for low-resource languages. This approach enables the model to transfer knowledge across
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languages and improve its ability to correct errors in low-resource settings. Multilingual
pre-training has demonstrated its efficacy in improving the accuracy of GEC for languages
with limited resources [12].

2.2 Related Theory
1. Encoder-Decoder Framework

The encoder-decoder architecture is a common approach for sequence-to-sequence tasks
in NLP. It consists of two main components; an encoder that processes the input se-
quence and captures its representations, and a decoder that generates the output
sequence based on the encoded framework. It has been widely used for machine trans-
lation and text summarization. [13]

2. Attention Mechanism
The attention mechanism is a technique that enables a model to selectively concentrate
on specific sections of the input sequence while processing each element of the output
sequence. By assigning varying weights or significance to different positions in the input
sequence, the attention mechanism allows the model to effectively capture pertinent
information, leading to enhanced performance in a range of sequence-to-sequence tasks.
This mechanism has gained extensive adoption and further development within the
field of natural language processing, substantially improving the model’s ability to
comprehend and generate contextually relevant sequences. [14]

3. Data Preprocessing
Data Preprocessing is an important step in preparing data for machine learning tasks.
It involves transforming, cleaning and organizing data to ensure its quality, consistency,
and compatibility with the chosen algorithms. Various steps are taken to transform
raw text data into a format suitable for NLP models. Some common preprocessing
steps are removing punctuation, tokenizing the text into words or subwords, converting
text to lowercase, removing stop words, and performing stemming and lemmatization
to normalize word forms. Data preprocessing is crucial in NLP to improve the quality
and efficiency of subsequent analysis or modeling tasks. The following are the crucial
steps involved in data preprocessing:

(a) Tokenization
Tokenization is a way of splitting text into smaller parts, like words or even indi-
vidual characters. It’s an important step when working with text on computers
because it helps us understand and work with the text more easily. By break-
ing text into smaller units called tokens, we can analyze and process the text in

7



a more detailed way, like counting words or finding patterns. It’s like breaking
a sentence into separate words, so we can understand each word better and do
more with them. Tokenization plays a crucial role in various natural language
processing tasks, such as machine translation, sentiment analysis, and named
entity recognition. In Nepali, tokens can be separated based on whitespaces or
specific language rules. For example, the sentence ”मेरो नाम राम हो” (meaning ”My
name is Ram”) can be tokenized into the following tokens: ["मेरो","नाम","राम ","हो" ].

(b) Stemming
Stemming is a linguistic process used in natural language processing to reduce
words to their base or root form. It involves removing prefixes, suffixes, and other
affixes from words to extract the core morphological meaning. Stemming aims to
simplify words so that variations of the same word are treated as a single entity,
which can aid in various language processing tasks. Stemming is useful for various
NLP tasks, such as information retrieval, search engines, and text analysis, where
recognizing different forms of a word as the same can help improve efficiency and
accuracy. In Nepali, stemming is done by separating the suffix (ूत्यय). For example,
from the word ”लेख्नहुोस”्, the root form ”लेख्न”ु could be extracted by stemming the
suffix(ूत्यय), ”-होस”्.

(c) Lemmatization
A lemmatizer is a linguistic tool used in natural language processing to reduce
words to their base or dictionary form, known as the lemma. Unlike stemming,
lemmatization considers the word’s context and part of speech to ensure that the
resulting lemma is a valid word with its intended meaning. Lemmatization is a
more accurate method compared to stemming, as it produces linguistically valid
forms. Lemmatization is particularly useful in applications where maintaining se-
mantic accuracy is crucial, such as language translation, sentiment analysis, and
information retrieval. By converting words to their dictionary forms, lemmati-
zation helps improve the accuracy of linguistic analysis and enhances the overall
quality of language processing tasks.

(d) Word Embedding
Word embedding is a technique used in natural language processing (NLP) to
represent words as dense numerical vectors in a high-dimensional space. It aims
to capture the semantic and contextual relationships between words, allowing
machines to understand and work with words in a more meaningful way. Word
embeddings have numerous applications in NLP. They are used to improve perfor-
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mance in various tasks, such as language modeling, sentiment analysis, machine
translation, and named entity recognition. By representing words as dense vec-
tors, word embeddings enable machines to process and understand language more
effectively, facilitating better performance in a wide range of NLP applications.

(e) POS Tagger
A Part-of-Speech (POS) tagger is a language processing tool that assigns gram-
matical tags to words in a text based on their syntactic roles within a sentence.
These tags indicate the word’s part of speech, such as noun, verb, adjective,
adverb, etc. POS tagging is valuable for understanding sentence structure, ana-
lyzing grammatical relationships, and extracting linguistic features. For example,
for a Nepali sentence, त्यो ठाउँमा सनुको खजुर खेती गदैर् छ।, the POS tagging would be ["त्यो
(सवर्नाम)" , "ठाउँमा (नाम)", "सनुको(नाम)", "खजुर(नाम)", " खेती(िबयािवशेषण)", "गदैर्(िबया)", "छ(िबया)"],
where सवर्नाम means pronoun, नाम means noun, िबयािवशेषण means the adverb and the
िबया means the verb.

(f) Data Augmentation
Data Augmentation is a technique that is used to artificially increase the size and
diversity of training data sets by applying a transformation to the original data or
by modifying it. In other words, we can say that data augmentation is a process
of creating an entirely new dataset from an available dataset by introducing some
changes to it. Data Augmentation can maintain the diversity in the dataset as
well as increase its size. In the case of Nepali Grammatical Error Correction,
data augmentation can be employed to generate additional training data that
exhibits different types of errors, linguistic variations as well as sentence structure.
This can be achieved by word replacement, sentence paraphrasing, grammatical
transformations, etc. By incorporating these data augmentation techniques, the
training data set for Nepali GEC can be expanded to include a wider range of
error patterns, sentence structures, and other linguistic variations. This enables
the model to learn more effectively and generalize its error correction abilities to
diverse Nepali texts.

4. Transformer
A transformer is a groundbreaking neural network architecture that has revolutionized
various natural language processing tasks. Unlike traditional sequence-based mod-
els, transformers leverage a self-attention mechanism to capture complex relationships
between words in a sequence, enabling them to consider context over long distances
effectively. This architecture consists of an encoder-decoder framework or solely an
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encoder, with each layer featuring multi-head self-attention and feed-forward neural
networks. Transformers have demonstrated exceptional proficiency in tasks like ma-
chine translation, text generation, and sentiment analysis, among others, by learning
contextual information and dependencies within input data. They have significantly
contributed to advancements in understanding language semantics and have become a
cornerstone of modern NLP, paving the way for innovative developments in the field.

The Transformer, introduced in the paper ”Attention is All You Need” by Vaswani
et al. [9], revolutionized sequence modeling in natural language processing and other
domains. This model is distinct for its attention mechanism, which enhances training
speed and effectiveness.

At its core, the Transformer is built upon a mechanism called ”self-attention.” Unlike
traditional sequence models like LSTMs or RNNs, which process data sequentially,
the Transformer leverages self-attention to weigh the significance of different words
in a sequence against each other. This attention mechanism enables the model to
consider the entire input sequence simultaneously, capturing dependencies between
words efficiently.

The key components of the Transformer are the encoder and decoder layers. The en-
coder processes the input sequence, utilizing self-attention to create contextual repre-
sentations for each word in the sequence. Meanwhile, the decoder generates an output
sequence by attending to the encoded information and predicting the next word based
on the context.
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Figure 2.1: The Transformer Architecture
[9]

The transformer consists of stacks of encoder and decoder blocks with each block in-
cluding self-attention, recurrent connections, and feed-forward neural networks. Below
are the descriptions of the encoder and decoder blocks.

(a) Encoder
It is responsible for processing the input sequence of tokens, XT = [x1, x2, x3,...,
xn], and producing a sequence of hidden states that capture the meaning and
context of each token in the input by incorporating its positional encodings. The
positional encoding for each token is calculated by using the following mathemat-
ical expression:

PE(pos,2i) = sin
(

pos

10000
2i

dmodel

)
PE(pos,2i+1) = cos

(
pos

10000
2i

dmodel

)
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PE(pos,2i) represents the 2ith dimension of the positional encoding for the word
at position pos.

PE(pos,2i+1) represents the (2i+1)th dimension of the positional encoding for the
word at position pos.

pos refers to the position of the word in any given sequence.

dmodel denotes the dimensionality of the model.

Each encoder layer includes a self-attention mechanism that computes the atten-
tion scores between all pairs of tokens in the input sequence and a feed-forward
neural network that applies a non-linear transformation(softmax) to the out-
put of the self-attention mechanism. This self-attention mechanism computes a
weighted sum of the hidden states for each token in the input sequence, where
the weights are based on the similarity between the token and all other tokens
in the sequence. This allows the encoder to focus on the most relevant parts of
the input sequence for each token, taking into account the context in which it ap-
pears. However, the transformer model uses multi-head self-attention to capture
multiple relationships, increase expressive power, become robust to variations in
data, and address regularization. The mathematical expression for calculating
each head’s self-attention is as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

Here, Q, K, and V are matrices of queries, keys, and values respectively. The dk

is the dimension of keys that is utilized to scale the resultant score. For single
head attention, dk = dmodel but for multi-head attention, dk is given by:

dk =
dmodel

h

Where h is the number of heads. The multi-head attention is essentially the
amalgamation of each head’s outcome which can be represented as,

MultiHead(Q,K, V ) = Concat(Head1,Head2, ...,Headh)Wo

where, Headi = Attention(QWi, KWi, V Wi)

Finally, a feed-forward neural network takes the response of the multi-head self-
attention followed by a recurrence connection and applies a non-linear transfor-
mation to the output of the self-attention mechanism, which allows the encoder
to capture more complex relationships between the tokens in the input sequence.
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(b) Decoder

It is responsible for generating the output sequence based on the encoded input
sequence generated by the encoder. The decoder is auto-regressive takes the en-
coded input sequence and generates the output sequence token-by-token. Each
decoder layer comprises of masked multi-head self-attention layer, multi-head at-
tention layer, and feed-forward neural network layer. First, masked self-attention
is computed over the target sequence Y. The masked multi-head self-attention
layer is similar to the self-attention layer in the encoder but with a mask applied
to ensure that the decoder cannot attend to future tokens in the output sequence.
This sublayer allows the decoder to attend to relevant parts of the output sequence
generated so far and capture the dependencies between the tokens in the output
sequence. Next, attention is computed over the encoded hidden representations
H. The multi-head attention layer is responsible for attending to the encoded
input sequence generated by the encoder. This sub-layer enables the decoder to
incorporate information from the input sequence into the output sequence and
produce a translated version of the input sequence. Then, a position-wise feed-
forward network is applied to the output representation obtained in the previous
step. The feed-forward neural network layer applies a non-linear transformation
including residual connections and layer normalization to the output of the at-
tention layers to generate the final output sequence. During training, the decoder
uses teacher forcing, where the true previous token is fed as input to the decoder
at each time step. During inference, the decoder generates the output sequence
token-by-token by recursively predicting the most likely token at each time step
based on the previous tokens and the encoded input sequence.

5. Fine-tuning

Fine-tuning refers to adjusting and calibrating various elements to achieve optimal
performance or functionality. In diverse contexts, from music to machinery, fine-tuning
involves delicate modifications aimed at achieving precision, accuracy, and efficiency.
In machine learning, fine-tuning refers to the process of tweaking pre-trained models
to adapt them to specific tasks or datasets, enhancing their ability to make accurate
predictions or classifications within a particular domain. It’s a crucial step, akin to
refining the details of a masterpiece, ensuring that the system performs optimally and
meets the desired criteria. Fine-tuning demands a keen eye for detail and a deep
understanding of the nuances within the system being adjusted, ultimately resulting
in improved performance and effectiveness.
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6. Bidirectional Encoder Representations from Transformers (BERT)

BERT is a transformer-based machine-learning technique for Natural Language Pro-
cessing (NLP) pre-training. It was introduced by researchers at Google AI Language
in 2018. It is a pre-trained encoder based model that leverages bidirectional training,
allowing it to learn from the entire sequence of words simultaneously. BERT employs
a masked language modeling task, where randomly selected words are masked, and the
model is trained to predict the masked words based on the context. Additionally, it
is trained on a next-sentence prediction task to understand the relationship between
sentences. BERT generates contextualized word embeddings, where the representa-
tion of a word is influenced by the words around it, enabling a better understanding
of word meanings in context. After the pre-training, BERT can be used for specific
downstream tasks such as Sequence Classification, Masked Language Modeling, etc

(a) BERT For Sequence Classification
A classification layer is added on top of BERT architecture. The layer consists
of fully connected layers followed by a softmax activation function. The output
dimensionality of the final layer depends on the number of classes in the classifi-
cation task.

Figure 2.2: BERT For Sequence Classification

(b) BERT For Masked Language Modeling
An input token is masked and bidirectional representations of the words, captur-
ing syntactic and semantic dependencies from both left and right contexts are
used to predict the masked token.
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Figure 2.3: BERT For Masked Language Modeling

7. Optimizers
Optimizers are algorithms or methods used to minimize an error function(loss function)
or to maximize the efficiency of production. Optimizers are mathematical functions
which are dependent on the model’s learnable parameters. Optimizers help to know
how to change weights and learning rate of neural network to reduce the losses.

(a) RMSProp
RMSProp (Root Mean Square Propagation) is an optimization algorithm de-
signed to address the limitation of traditional gradient descent algorithms like
slow convergence and difficulty in choosing a suitable learning rate. RMSProp is
an adaptive learning rate optimization algorithm which works by exponentially
decaying the learning rate every time the squared gradient is less than a certain
threshold. While training, the gradients are usually such that one changes a lot
while other does not change much.

The update rule for RMSProp can be described as follows:
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vt = βvt−1 + (1− β)g2t

θt+1 = θt −
η

√
vt + ε

gt

where:

• vt is the exponentially decaying average of squared gradients.

• gt is the gradient at iteration t.

• β is the decay rate parameter (typically close to 1).

• η is the learning rate.

• ε is a small constant to prevent division by zero (typically a small value like
10−8).

• θt and θt+1 are the parameter vectors at iteration t and t+ 1 respectively.

RMSProp adapts the learning rate separately for each parameter by using a mov-
ing average of squared gradients. It effectively normalizes the gradients based on
their past magnitudes, helping to stabilize and speed up the training process.

(b) AdaGrad
AdaGrad (Adaptive Gradient Algorithm) is an optimization algorithm that adapts
the learning rate of each parameter based on the historical gradients for that
parameter. It performs larger updates for infrequent parameters and smaller
updates for frequent parameters.

The update rule for AdaGrad can be described as follows:

Gt = Gt−1 + g2t

θt+1 = θt −
η√

Gt + ε
gt

where:

• Gt is the sum of squared gradients up to iteration t.

• gt is the gradient at iteration t.

• η is the learning rate.

• ε is a small constant to prevent division by zero (typically a small value like
10−8).

• θt and θt+1 are the parameter vectors at iteration t and t+ 1 respectively.
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AdaGrad effectively reduces the learning rate for parameters that are updated
frequently and increases it for parameters that are updated infrequently. How-
ever, it suffers from a diminishing learning rate problem, where the learning rate
becomes too small over time, making it less effective for later stages of training.

(c) Adam
Adaptive Moment Estimation(Adam) stands out as being one of the most highly
efficient optimization algorithms designed to adjust the learning rate for each
parameters while training. At its core, Adam optimizer is designed to adapt to
the characteristics of the data. It does this by maintaining the individual learning
rates for each parameter in our model. These rates are adjusted as the training
progresses based on the input data it encounters.

Adam (Adaptive Moment Estimation) is an adaptive learning rate optimization
algorithm that combines the advantages of two other popular optimization algo-
rithms: AdaGrad and RMSProp.

The update rule for Adam can be described as follows:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt+1 = θt −
η√

v̂t + ε
m̂t

where:

• mt and vt are the first and second moment estimates of the gradients respec-
tively.

• gt is the gradient of the learnable parameters at iteration t.

• β1 and β2 are the exponential decay rates for the moment estimates (typically
close to 1).

• η is the learning rate.

• ε is a small constant to prevent division by zero (typically a small value like
10−8).

• m̂t and v̂t are bias-corrected estimates of the moments to account for the
initialization bias.
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• θt and θt+1 are the parameter vectors at iteration t and t+ 1 respectively.

Adam is known for its efficiency and robustness in training deep neural networks.

(d) AdamW
AdamW is a modification of this Adam optimizer. AdamW solves this problem by
decoupling weight decay from the gradient-based optimization step. It achieves
this by applying weight decay directly to the weights after each optimization step,
rather than including it in the update rule. This means that weight decay is only
applied to the parameters that should be regularized, such as the weights, and
not to the ones that shouldn’t, such as the bias terms. This results in improved
performance and better convergence.

The update rule for AdamW is similar to Adam, but it includes the weight decay
term in the parameter update step:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt+1 = θt −
η√

v̂t + ε
m̂t − λθt

where:

• mt and vt are the first and second moment estimates of the gradients respec-
tively.

• gt is the gradient at iteration t.

• β1 and β2 are the exponential decay rates for the moment estimates (typically
close to 1).

• η is the learning rate.

• ε is a small constant to prevent division by zero (typically a small value like
10−8).

• λ is the weight decay coefficient.

• m̂t and v̂t are bias-corrected estimates of the moments to account for the
initialization bias.

• θt and θt+1 are the parameter vectors at iteration t and t+ 1 respectively.
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AdamW improves upon Adam by decoupling weight decay from the adaptive
learning rate, allowing for more stable and effective training. This separation
prevents the learning rate from being affected by the weight decay term, leading
to better generalization performance.

8. CUDA®

Compute Unified Device Architecture (CUDA) is a parallel computing platform and
API model created by NVIDIA® which allows for softwares and programs to use the
GPUs for accelerated general purpose processing.. It allows developers to harness
the computational power of NVIDIA® GPUs (Graphics Processing Units) for general-
purpose processing tasks beyond just graphics rendering.

CUDA® enables developers to write programs that can execute on the GPU, taking
advantage of the massive parallel processing capabilities it offers. This allows for
significant acceleration of tasks that can be parallelized, such as scientific simulations,
machine learning, image and video processing, and more. CUDA® is a software layer
that gives the computer programs direct access to the GPU’s virtual instruction set and
its parallel computational elements to perform complex matrix computations parallely
which helps in effectively training newer and complex deep learning models known
today.

9. Frontend

Frontend development refers to the practice of creating user interfaces (UIs) and imple-
menting the visual and interactive elements of web applications or websites. It involves
the use of various technologies and languages, including HTML, CSS, and JavaScript,
to build the client-side components that users directly interact with. HTML (Hy-
pertext Markup Language) provides the structure and content of web pages, defining
elements such as headings, paragraphs, lists, and links. CSS (Cascading Style Sheets)
is responsible for controlling the visual appearance and presentation of these elements,
including layout, typography, colors, and animations. JavaScript, a programming lan-
guage, adds interactivity, dynamics, and behavior to web pages, enabling features like
form validation, animations, and single-page applications (SPAs). In our case, the
front end is done using the Django templating engine and Python forms.

10. Backend

Backend development refers to the server-side logic and infrastructure that powers web
applications and websites. It involves the design, implementation, and maintenance
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of the components that handle data processing, business logic, and communication
with databases and other external services. In our case, the backend was done using
Django. Django is a high-level, open-source Python web framework that follows the
Model-View-Template (MVT) architectural pattern. It is designed to simplify the
development of secure and maintainable web applications by providing a wide range
of built-in features and tools. Some of the tools include Object Relational Mapper,
Admin Interface, Templating System, URL Routing and Form Handling
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3. Methodology

3.1 Feasibility Study
The section evaluates the technical and operational feasibility.

3.1.1 Technical Feasibility
1. Availability of datasets

Being a low resource language, there was limited availability of datasets for the Nepali
language so a lot of time was required to gather and filter out the Nepali texts to make
a reliable Nepali dataset of texts and inflect the errors on the dataset to generate the
pair of correct and error inflected sentences.

2. Computing resources
Cloud computing services, including Google ColabTM and Kaggle NotebooksTM, were
used to leverage their scalable computing resources for training. However, the problem
of financing comes into play as the free version of these platforms comes with limita-
tions, especially in terms of resource availability and reliability. Occasional downtimes
and connectivity issues disrupt the ongoing tasks. In the case of Google ColabTM, ac-
cess to GPU resources is not available 24/7, which hinders the model training process.
As a result, the models were trained locally on a laptop computer equipped with a ded-
icated NVIDIA® GeForce® RTXTM 4060 GPU, consisting of 8GB VRAM. The device
also features an Intel® CoreTM i9-13950HX CPU and 32GB DDR5 system memory.

3. Tools and Frameworks
Python will be our main language for development and we can also utilize various open-
source frameworks such as PyTorch, HugggingFace Transformers library and scikit-
learn, among others, for implementing machine learning (ML) functionalities in the
project. CUDA version 11.8 was also used to harness the power of parallel computing
capability of the GPU and the torch version 2.2.0 (cuda11.8 as compute platform) was
used alongside. Tensorflow version 2.9.0 was used.
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3.1.2 Operational Feasibility
1. User Acceptance

The grammar detection and correction system is intended for students, teachers, lan-
guage enthusiasts, content creators, academic institutions, and language technology
researchers. Surveys, and interviews, can be conducted to assess the interest, accep-
tance, and usability of the system among the target users.

2. Scalability
The scalability of the system depends on the two main factors i.e. more and more
training data along with the training resource availability and also the user growth.
Due to the low availability of the training resource to train on a huge dataset, the sys-
tem could take a very long time to scale and also the low availability of dataset affects
the scalability over time as more and more data have to be collected and augmented
to emulate the grammatical errors in Nepali text. User growth also affects the system
as more and more users would feed the data in the system to get the predictions which
helps in gathering huge data over time due to the users feeding the data.

3.2 Requirement Analysis

3.2.1 Functional Requirement
1. Text Input

The system should allow users to input Nepali text sentences or paragraphs for gram-
mar correction.

2. Grammar Correction
The system should employ neural networks to analyze and correct grammar errors in
the Nepali text.

3. Correction suggestions
The system should provide suggestions and explanations for the grammar corrections
made.

4. Sentence-level correction
The system should handle individual sentences for correction.

5. Grammar rule coverage
The system should cover a wide range of Nepali grammar rules to effectively correct
errors.
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6. User Feedback
Provide a mechanism for users to provide feedback on the accuracy of the grammar
corrections.

3.2.2 Non-Functional Requirement
1. Performance

a. R1.1: System response time should be optimized, with a maximum response time
of 5 seconds for user input processing.
c. R1.2: Page loading time should be minimized, with pages loading within 3 seconds
to enhance user satisfaction.
d. R1.3: The system should exhibit low latency for data retrieval and processing to
ensure efficient grammar correction.

2. Scalability
a. R2.1: The system should be scalable to accommodate an increasing number of users
without compromising performance.
b. R2.2: The system should handle at least 50 concurrent users to support simultane-
ous usage.

3. Security
a. R3.1: Sensitive user data and information should be securely encrypted to protect
user privacy.

4. Usability
a. R4.1: The system should have a user-friendly interface for easy navigation and
usage.
b. R4.2: Clear and concise error messages should be provided to assist users in ad-
dressing any issues.
c. R4.3: The system should maintain a consistent layout and design across all appli-
cation modules.
d. R4.4: The system should be responsive and compatible with different screen sizes
and resolutions.
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5. Reliability
a. R5.1: The system should have a high level of reliability, with a low probability of
failure.
b. R5.2: The system should be designed to recover quickly from any failures that occur.

6. Availability
a. R6.1: The system should have high availability with minimal downtime to ensure
continuous access.
b. R6.2: Data recovery mechanisms should be in place, including backup systems, to
mitigate the impact of any potential disasters.

7. Maintainability
a. R7.1: The system should be designed for easy maintenance and updates to support
ongoing improvements.
b. R7.2: A version control system should be implemented to track changes and facili-
tate efficient development processes.
c. R7.3: Clear and detailed documentation of the system’s API should be provided for
ease of understanding and integration.

8. Compliance
a. R8.1: The system should comply with relevant laws, regulations, and industry
standards to ensure legal and ethical operation.

9. Internationalization
a. R9.1: The system should support different date and time formats to accommodate
international users.
b. R9.2: Cultural conventions and sensitivities should be considered to ensure inclu-
sivity and user satisfaction.

10. Extensibility
a. R10.1: The system should be designed to be extensible, allowing for the addition
of new features and functionality.
b. R10.2: The system should have a modular design to facilitate easy replacement of
individual components.
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3.3 Corpus Creation
One of the clinical tasks of this project is the corpus creation. In the case of Grammatical Er-
ror Correction, one of the major barriers is the availability of a large corpus. In recent years,
the creation of such a corpus has been done in various other major languages such as English,
German, etc but it is not the case with Nepali language. Hence, we take a leap forward to
develop a large parallel corpus for the Nepali Grammatical Error Correction. To accomplish
the task, we’ve categorized different issues such as verb inflections, Homophones(words that
sound the same but have different spelling) errors, sentence structure flaws, punctuation
mistakes, and incomplete sentences due to sentence flaws. The incomplete sentences are
further divided into two categories such as missing subject (pronoun) and missing verb. The
corpus includes the specific grammatical errors as described below:

1. Verb Inflection

Verb inflection refers to the modification of a verb that expresses a different grammat-
ical form of the verb. By undergoing verb inflection, the relationship between the verb
and its associated subject will be disrupted which creates an error in the sentence.

For example,

Incorrect Correct
बाबाले सपर् बारे अरू बढी केही बोल्छ । बाबाले सपर् बारे अरू बढी केही बोल्नभुएन ।

Table 3.1: Verb Inflection

2. Homophones Error

Homophones are words that sound alike but have different meanings and spellings.
They play a significant role in communication often leading to confusion due to the
similarity in pronunciation. The use of wrong homophones disrupts the sentence mean-
ing leading to incorrect sentences. For example,

Incorrect Correct
दगुर्म क्षेऽका अरू जनताले पिन उनीहरू बाट पात

िसक्नपुछर् ।

दगुर्म क्षेऽका अरू जनताले पिन उनीहरू बाट पाठ

िसक्नपुछर् ।

Table 3.2: Homophones Error
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3. Punctuation Error

Punctuations are the symbols that aid in clarity, structure, and comprehension. In
Nepali language punctuation marks such as commas(,), full stop(�), question mark(?),
exclamation mark(!), and others. The incorrect use of punctuation leads to misunder-
standing or ambiguity. They affect the clarity of the sentence. For example,

Incorrect Correct
तर यसका लािग िनजी ःकूलहरू माऽ दोषी छैनन ् ? तर यसका लािग िनजी ःकूलहरू माऽ दोषी छैनन ् ।

Table 3.3: Punctuation Error

4. Sentence Structure

Sentence structure refers to the arrangement of words and phrases to form coherent and
meaningful sentences. The incorrect arrangement of words in a sentence results in a
grammatically incorrect sentence. The incorrect sentence usually changes the meaning
of the sentence and makes it difficult to understand the sentence. For example,

Incorrect Correct
एकै कोठा मा सतु्ने दाजुभाइ पिन बीच कुराकानी हुन

छाडेको छ ।

एकै कोठा मा सतु्ने दाजुभाइ बीच पिन कुराकानी हुन

छाडेको छ ।

Table 3.4: Sentence Structure Error

5. Sentence Fragments

Sentence Fragments are incomplete collections of words that lack a subject or a verb,
which doesn’t form a complete sentence. When writers omit necessary components,
these fragments can cause confusion or ambiguity in communication, potentially lead-
ing to misunderstanding. It is further divided into two parts as

(a) Subject Missing: This sentence fragment contains those sentences in which the
subject is not included. In case of subject missing, we cannot remove the noun
as it plays a crucial role in conveying the intended message. So only the pronoun
is removed. A pronoun is a word that substitutes for a noun or noun phrase. It’s
used to avoid repeating the same noun multiple times in a sentence or paragraph.
Pronouns can refer to people, places, things, or ideas previously mentioned or
understood in the context of the conversation or text. The absence of the pronoun
in a sentence leads to ambiguity or a lack of clarity regarding the subject or object
being referenced. For example:
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Incorrect Correct
सचूना बािन्तको दिुनया मा मख्ख परेर ठूलो ॅािन्त

पािलरहेका छौँ ।

हामी सचूना बािन्तको दिुनया मा मख्ख परेर ठूलो ॅािन्त

पािलरहेका छौँ ।

Table 3.5: Pronoun Error

(b) Verb Missing: This sentence fragment contains those sentences in which the verb
is not included. It is further divided into two parts such as Main Verb Missing
Error and Auxiliary Verb Missing Error which are described as follows.

i. Main verb Missing Error
Main verbs, also known as principal verbs or lexical verbs, are fundamental
components of sentences that convey the action or state of being. Unlike
auxiliary verbs (helping verbs), which assist the main verb in forming verb
phrases, main verbs stand alone and carry the primary meaning in a sentence.

Incorrect Correct
यो टेिक्नक पिन ूभाववाद सँग सम्बद्ध । यो टेिक्नक पिन ूभाववाद सँग सम्बद्ध छ ।

Table 3.6: Main Verb Missing Error

ii. Auxiliary Verb Missing Error
Auxiliary verbs, also known as helping verbs, are used alongside main verbs
to add functional or grammatical meaning to a sentence. They assist the
main verb in conveying various aspects such as tense, mood, voice, or aspect.
Absence of the auxiliary verb in a sentence results in a loss of information
regarding aspects like tense, mood, voice, or aspect, leading to ambiguity or
an incomplete expression of the action or state described in the sentence. For
example:

Incorrect Correct
खाद्यान्नकै हक मा पिन सके सम्म खेर गरी खाना नै

नबनाए हुने ।

खाद्यान्नकै हक मा पिन सके सम्म खेर जाने गरी खाना

नै नबनाए हुने ।

Table 3.7: Auxiliary Verb Missing Error
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3.4 System Design

3.4.1 Transformer-Based Training Approach
The gathered data will undergo a process of tokenization, wherein sentences will be trans-
formed into individual words through techniques such as word segmentation or byte-pair
encoding. This step is crucial in preparing the text for input into the transformer model,
breaking down the text into smaller units or tokens to facilitate language understanding and
grammar error correction with the added advantage of self-attention mechanisms that enable
the model to capture long-range dependencies and contextual information.

Training a transformer model for Nepali GEC involves a direct approach where pairs of
error and correct sentences as from the created corpus serve as the primary training data.
The training process revolves around feeding the transformer model with pairs of sentences
where one sentence would contain the grammatical errors(input) and the other presents
the corrected version(output). These pairs serve as direct training instances for the model,
guiding it to understand the associations between erroneous and correct Nepali sentences,
with self-attention aiding in capturing intricate linguistic nuances.

Each sentence pair would undergo tokenization and vectorization, converting the sen-
tences into numerical representations for these sentences X = [x1, x2, x3, ..., xn] and Y =
[y1, y2, y3, ..., ym] where xi and yj are the ith and jth word of the erroneous and correct
sentences X and Y respectively. The model’s training involves iterative optimization us-
ing techniques like back-propagation, gradient-based optimization algorithms like SGD or
Adam, and careful adjustments of hyper-parameters, with self-attention playing a pivotal
role in enhancing the model’s understanding of contextual dependencies.

The model would learn directly from the provided error-correction pairs aiming to imbue
the transformer model with the ability to discern and rectify Nepali-specific grammatical
errors solely through the presented error-corrected sentence pairs.
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3.4.2 Fine-Tuning Strategy
In contrast to the direct training approach, an alternative method for Nepali GEC involves
leveraging the Large Language Models BERT. These pretrained models have a comprehensive
understanding of the nuances involved in Nepali linguistics.

Leveraging such pre-trained models, would reduce the burden of pretraining the model
on large Nepali corpus as it takes a lot of computing time for a low end device that is used
throughout the completion of the project. The process of fine-tuning the model on our
corpora for Nepali GEC becomes essential.

To carry out the task for GEC, we use a pre-trained BERT model, which is then fine-
tuned with the generated corpora for correct and erroneous sentences for single sentence
classification to identify whether the sentence is grammatically correct or not. This fine-
tuning will give us the GED model. We would use the MLM of the BERT model to come
up with alternate sentences and use the fine-tuned GED model to come up with the correct
suggestions.

Figure 3.1: Flow of how GED model works.

The constructed corpora is read and labelled as correct and incorrect and passed to the
tokenizer which preprocesses and tokenize the raw text input into a format suitable for input
for our BERT model. The model iterates over the corpus learning its intricacies generating
an intermediate value as BERT is an encoder model. The output is passed through a Dense
layer which is a classification layer helping in classifying whether the input sentence is correct
or not. The model learns from the sentences and their corresponding labels for classification
purpose.
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Figure 3.2: Flow of how the GEC system works.

The GED model forms the core of our GEC ecosystem. If the GED model detects that
the input sentence is incorrect, the masked sentences are created where [MASK] token is
injected to the parts of the sentence. Then the BERT MLM is used to generate sentences
by predicting the [MASK] tokens in all the sentences. For each incorrect sentence, we inject
[MASK] in two different ways i.e. masking each word and adding [MASK] token in each
space of the sentence. The generated sentences are yet again passed to the GED model to
detect whether the sentences are correct or not. The incorrect labeled sentences are discarded
whereas the correct sentences are passed as suggestion to the end user.
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4. Experimental Setup
The setup for the experiment involved in this project in order is as follows:

4.1 Dataset Collection and Preprocessing
The project utilized data sourced from a variety of freely available news portals in the
public domain, with Rabindra Lamsal facilitating the process[15]. These portals included
Ekantipur, Nagariknews, Setopati, Onlinekhabar, Karobardaily, Ratopati, News24nepal, Re-
portersnepal, Baahrakhari, Hamrokhelkud, and Aakarpost[15]. Subsequently, a data clean-
ing process was undertaken to refine the collected data. This involved discarding sentences
that exceeded 20 words or were less than 3 words in length, while also accounting for punc-
tuation marks. Additionally, any characters not conforming to the Devnagari Script were
eliminated, and English numerals were converted to Nepali numerals for consistency within
the text. Following this, a step was taken to extract unique sentences to remove redundancy.
Sentences containing only one parenthesis or single or double quotes were also discarded.
Finally, the processed sentences were stored in a .txt file for future reference and utilization.

4.2 Data Augmentation
The different types of errors discussed above are generated on the collected data employing
noise injection techniques. Each sentence is regarded as a set of words, denoted by S =
{W1, W2, ..., WN−1, WN} where N represents the sentence length which is a positive integer.
Every word Wi ∈ S is viewed as a collection of Nepali characters: Wi = {C1, C2, ..., CM−1,
CM} where M stands for the length of the word which is also a positive integer. It is ensured
that each artificially flawed sentence contains only one mistake. However, some sentences
may contain multiple words with errors, leading to several flawed versions. Therefore, this
process yields one correct sentence alongside multiple incorrect forms.

Firstly, the verbs are extracted from the data using the POS Tagger. After this, the
lemma of the verbs are extracted using the hybrid approach of the Lemmatizer. From the
verbs and lemma, the suffixes are collected which is as A = {a1, a2, ..., aD} where ai ∈ A

is the ith suffix. The elements within the set A are organized into sub-lists based on the
similarity of the suffix. These sub-lists are represented as Dj = [d1, d2, ..., dF ] such that
di ∈ A and Dj is the jth sub-list. Then, a dictionary is created from the similar groups,
which is as D = {G1 : D1, G2 : D2, ..., GN : DN } where Gi is the ith group name and Di

is its corresponding list of similar suffixes. Then we iterate each verb of the sentence and
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determine whether it is found in the dictionary or not. If found the suffix of the verb is
replaced with a similar suffix from the dictionary.

For the Homophones error, the website [16] was scraped for the homophones and missing
homophones were added manually. A dictionary is created for the homophones such as H =
{H1 : P1, H2 : P2, ..., Hi : Pi } where hj is the jth word and pj is its respective homophone.
To generate the error, we iterate through each word Wi in a sentence S, and if the word is
found in the homophones’ dictionary key, the word is replaced by its respective value. This
creates an erroneous version of the correct sentence.

In order to generate punctuation error, we go through each character Ci of the sentence
S, and if a punctuation symbol is found. An error is generated with a random probability.
In case of full stop(�), question mark(?) and exclamation mark(!), they are either removed
or replaced with the one which has not occurred. In case of other symbols, they are re-
moved with the random probability. Alternatively, we induce errors in sentence structure by
randomly swapping the positions of two words within a sentence with a random probability.

In order to generate error for the missing subject and the missing verb, similar approach
is used. The use of POS taggers were helpful in generating corresponding POS tags for each
word Wi in the sentence S, denoted as St = {pt1, pt2, .. , ptn} for n words in S. Then, we
iterate through the tag set St and if the POS tag indicates a pronoun, then the pronoun is
removed to generate pronoun missing error. In the POS tagging process, auxiliary verbs and
main verbs aren’t distinguished. To determine the main and auxiliary verbs in a sentence,
a list of verbs within the sentence is extracted. The final verb that completes the sentence
structure is considered the main verb, while the preceding verbs are regarded as auxiliary
verbs based on specific rules crafted for this purpose. So by removing the auxiliary verb,
auxiliary verb missing error is generated and by removing the main verb, main verb missing
error is generated.
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4.3 Corpus Statistics
The developed Nepali GEC corpus comprises seven distinct types of errors The verb inflection
errors are found to be the most frequent(39.39%) and the Pronouns error are found to be
the least frequent (3.89%). The reason for verb inflection error to be most frequent is that,
it also refers to the errors related in the subject-verb agreements, errors related to numbers
and some other errors where some words might end up wrong with the verb inflected. The
whole error inflection statistic can be summarized by the table as follows:

Error Types Number of Instances
Verb Inflection 3202676

Pronouns 316393
Sentence Structure 1001038

Auxiliary Verb Missing 1031388
Main Verb Missing 1031388

Punctuations Errors 1044203
Homophones Errors 503524

Total Errors = 8130496

Table 4.1: Statistics of the Nepali GEC Corpus.

The amount of different error types is justified as none of them were introduced manually
as of now. All the instances have been crafted automatically based on the underlying corpus
and predefined suffixes which are carefully extracted. Moreover, error related to word choice
is the least common in the corpus which is logical considering the fact that the Nepali
language has a relatively small number of homonyms, On the other hand, the most prominent
error type in the corpus is related to verb inflection which is not surprising given the fact
that the Nepali language has a wide range of verb inflection suffixes and also due to the fact
that the inflection covers a wide range of errors.

4.4 Model
For Nepali grammar error correction, two distinct pre-trained from the same BERT archi-
tecture were used i.e. MuRIL and NepBERTa. MuRIL is a BERT base model pre-trained
on 17 languages with their transliterated counterparts which also includes Nepali[17]. Simi-
larly, NepBERTa is also a BERT based model trained on about 800M Nepali words.[18] The
models being pre-trained on Nepali languages thus understand the intricacies that lie within
the Nepali language and thus was fine-tuned to perform the task of GED by using the Bert
For Sequence Classification. Similarly, the Bert For Masked Language Modeling versions of
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this models are used to generate the suggestions of corrected grammar sentence.
MuRIL is available in two versions i.e. base and large. The base version was selected for

the task as the model gets larger, the need of resources increases. So, the base version was
best fit for the limited resources. The total number of parameters for the Sequence Classi-
fication Model is 237,557,762 and for the Masked Language Modeling model is 237,755,045.
The length of the Tokenizer is 197,285.

In case of the NepBERTa, the total number of parameters for the Sequence Classification
model is 109,483,778 and for the Masked Language Modeling model is 109,514,298. The
length of the Tokenizer is 30,523.

4.5 Model Training and Tuning
Before starting the training process, the data preparation is done. The total number sentence
pairs from the above statistics was found to be 8,130,496. This sentence pair was split
between training and validation data where 95% of the entire dataset was used to construct
the training dataset i.e. 7,723,971 and 5% of the entire dataset was used to construct the
test dataset i.e. 406,525. As the dataset is in the form of pairs i.e. of correct sentences
and incorrect sentences, ”label 0” was given to correct sentences while ”label 1” was given
to incorrect sentences. The following table shows the characteristic of the training and
validation dataset.

Split Number of
Correct

Sentences

Number of
Incorrect
Sentences

Total Sentences

Train 2,568,682 7,514,122 10,082,804
Valid 365,606 405,905 771,511

Table 4.2: Description of Dataset

The training data is used to fine tune the model for GED task and valid dataset is used
to evaluate the fine-tuned model to see how well does the model actually work.

The models(MuRIL and NepBERTa) being already pre-trained on Nepali text understand
the intricacies of Nepali language and thus the burden of pre-training on large unlabelled
corpus is relieved hence saving the time required for tuning the models. So, the pre-trained
models is fine-tuned for a downstream task i.e. Sequence Classification for the GED task.
For the GEC task, MLM model of the same pre-trained models are utilized following the
GED task.

At first, to train the model for the Sequence Classification task, the MuRIL model was
loaded from the HuggingFace hub using the HuggingFace transformers library. The tokenizer

34



was also loaded along with the model. As the task of GED is sensitive to case folding, the
tokenizer is initialized such that the tokens aren’t case folded (do_lowercase = False) and
are used as it is. Then, the dataset is tokenized using the tokenizer and Dataset Dictionary
was created for both training and validation datasets. The Dictionary and the model were
then loaded to the GPU and the training process was initialized. The following were the
hyper-parameters while training the model:

• Epoch = 1

• Train Batch Size = 256

• Valid Batch Size = 256

• Loss Function = Cross Entropy Loss

• Optimizer = AdamW

• Optimizer Parameters:

– Learning Rate = 5e−5

– β1 = 0.9

– β2 = 0.999

– ε = 1e −8

The same approach as explained above is used for the NepBERTa model while the number
of training epoch was increased to 2.

4.6 GEC Engine
The GEC Engine is made up of the GED model and the MLM model. The GED model is the
heart of the GEC engine which labels the input sentence as correct or incorrect. When an
input is passed to the engine, it first undergoes through the GED model. If the input sentence
is classified as correct, the user is notified that the sentence is correct and no correction is
necessary. In case of incorrect, a set of masked sentences are created from the input sentences.
The masked sentences are created by masking each word of the input sentence and masking
each space between the words. After the masked sentences are generated, those sentences
are passed to the MLM model which is either MuRIL or NepBERTa. The MLM model
generates the masked token which replaces the [MASK] in the mask sentence. The sentence
is then passed to the GED model, which labels the sentence. If the sentence is labelled as
incorrect, the sentence is rejected while if the sentence is labelled as correct, it is passed as
a suggestion to the user.
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Here is an example of generated masked sentences:

Input sentence यो एउटा उदाहरण हो ।

Masked Sentences [MASK] एउटा उदाहरण हो ।

[MASK] यो एउटा उदाहरण हो ।

यो [MASK] उदाहरण हो ।

यो [MASK] एउटा उदाहरण हो ।

यो एउटा [MASK] हो ।

यो एउटा [MASK] उदाहरण हो ।

यो एउटा उदाहरण [MASK] ।

यो एउटा उदाहरण [MASK] हो ।

यो एउटा उदाहरण हो [MASK] यो एउटा उदाहरण हो [MASK] ।

यो एउटा उदाहरण हो [MASK] ।

Table 4.3: Example of Masked Sentences

4.7 Tools and Libraries
The development of the Nepali GEC system involves the use of various tools and technologies
which are listed as follows:

1. Programming Language
Python has a rich ecosystem of libraries and frameworks supporting a wide range of
Machine Learning tasks involving the NLP tasks leading to the suitability use in the
development of the Nepali GEC system.

2. Backend
The backend is implemented in Django. Django is a high-level web framework written
in Python that encourages rapid development and clean, pragmatic design. It follows
the MVC architectural pattern, emphasizing the concept of reusability and ”plugga-
bility” of components. Django’s primary goal is to simplify the creation of complex,
database-driven websites by providing built-in tools and features for common tasks.
One of the key features of Django is its ORM system, which abstracts database in-
teractions and allows developers to define data models using Python classes. This
abstraction enables developers to work with databases using familiar Python syntax,
without needing to write raw SQL queries. Django also includes a powerful template
engine that facilitates the separation of presentation and logic in web applications.
Templates in Django are HTML files with embedded Python code, allowing for dy-
namic content generation based on data passed from views. Routing and handling
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HTTP requests is handled through Django’s URL dispatcher, which maps URL pat-
terns to corresponding views. Views are Python functions or classes that process
incoming requests and return HTTP responses, typically by rendering templates or se-
rializing data. Additionally, Django provides built-in support for user authentication,
session management, form handling, and security features such as protection against
common web vulnerabilities like XSS and CSRF.

3. Transformers Library
The Transformers library, developed by Hugging Face, is a comprehensive toolkit for
NLP tasks. It offers easy access to state-of-the-art pre-trained models like BERT and
GPT, along with tools for fine-tuning and deploying these models for various NLP
tasks. MuRIL and NepBERTa were also loaded and fine-tuned for the GED task using
the transformer library. It helped loading and saving the pre-trained and fine-tuned
models easily thus helping for training and inference.

4. PyTorch
PyTorch was used to build and train our neural network model for Nepali GEC. These
frameworks provide efficient implementations of neural network layers, optimization
algorithms, and other essential components required for model training also utilizing
the GPU resources for way faster computation than what a normal CPU could do. In
this project, PyTorch was used for training and fine-tuning our GEC models, handling
the data pipeline, and optimizing the model’s performance.

5. Development Environments
IDEs like PyCharm, Jupyter Notebook, or Visual Studio Code provide a user-friendly
coding environment with features such as code editing, debugging, and execution.
These IDEs can enhance productivity during the development of the GEC system. For
this project, Visual Studio Code with Jupyter Notebook was used to build and develop
our model and the PyCharm was used to create the API endpoints for the GEC model
to interact with the frontend. NVIDIA® CUDA® version 11.8 was used to provide the
required parallel computing platform to train such large models on NVIDIA® GeForce®

RTXTM 4060. Torch version 2.2.0 (CUDA 11.8 as compute platform) was also installed
using pip package manager to load the parameters and train the model on the GPU.

Besides that Google Collab and Kaggle Notebooks were also used for testing and
debugging purposes alongside locally before actually leaving the device to train on
the large dataset. Google Collab and Kaggle Notebooks were also used to test the
fine-tuned model on new data to observe the performance.
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6. Version Control Systems
Version control systems like Git can be employed to manage code repositories and
collaborate with team members. They allow for tracking changes, branching, and
merging of code, ensuring a systematic and organized development process. Because
of our familiarity with git, we will be using git to maintain the code repositories and
collaborate. Github was also used as a platform to push our progress remotely and
make changes locally as well as remotely.
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4.8 Performance Metrics
For this project, the performance metrics might be the points listed below:

1. Accuracy
Accuracy represents the proportion of correctly classified instances over the total num-
ber of instances. Calculated by dividing the number of correctly classified instances
by the total number of instances and multiplying the result by 100 to express it as a
percentage.

2. Processing Time
Calculate how long it takes the system to examine and fix grammar mistakes in a given
input. It shows how quickly and effectively the system responds.
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5. System design

5.1 System Context Diagram
The diagram illustrates the system context diagram of an application that allows users to
correct Nepali text. The system works as follows:

A user begins by entering the Nepali text they wish to have corrected into the applica-
tion’s interface. This could be a form of written Nepali content containing errors or issues
the user wants to fix. After entering the text, the user submits it to the application’s backend
processing system. This triggers the grammar correction model to analyze the submitted
text. It identifies and corrects any grammatical mistakes, misspellings, incorrect word usage,
or other language issues present. Once the model finishes correcting the text, the applica-
tion sends the revised, error-free version back to the user interface for display. The corrected
Nepali content is now available for the user to review. Additionally, the application provides
an option for the user to submit feedback on the quality and accuracy of the corrections
made by the system. This feedback loop allows the developers to continuously enhance the
performance of the underlying grammar correction algorithm over time.

Figure 5.1: System Context diagram
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5.2 Data Flow Diagram
This diagram illustrates the level 1 DFD of an application that allows user to correct Nepali
text. A user begins by entering the Nepali text they wish to have corrected into the interface
of application. The input text can be any form of written Nepali content. After entering the
text, the user then submits the text to the Grammatical Error Detection Model. The model
then detects if the text is correct or incorrect. If the text is correct, then it sends the input
text back to user. If the input text is incorrect then it sends the incorrect text to grammatical
error correction engine. The grammatical error correction engine then generates the correct
sentence and returns it to the user.

Figure 5.2: Data Flow Diagram diagram

41



5.3 Use Case Diagram
The use case diagram shows the different ways that a user can interact with a Nepali grammar
correction system. The system allows users to input Nepali text, correct the grammar of the
text, and provide feedback on the correction.

The main use cases of the system are as follows:

1. Input Nepali text: The user can input Nepali text into the system by typing it in or
by pasting it from another document.

2. Correct grammar: The system can correct the grammar of the Nepali text. The system
uses a grammar correction model to identify and correct grammatical errors in the text.

3. Provide feedback: The user can provide feedback on the grammar correction that the
system has made. The user can indicate whether the correction is correct or incorrect,
and they can also provide suggestions for how the correction could be improved.

The use case diagram also shows the different actors that interact with the system. The
main actors are the user and the grammar correction model. The user is the person who
inputs the Nepali text and provides feedback on the correction. The grammar correction
model is a computer program that identifies and corrects grammatical errors in Nepali text.
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Figure 5.3: Use case diagram
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5.4 System Sequence Diagram
The system sequence diagram portrays the flow of interactions within a web-based applica-
tion designed to facilitate the correction of Nepali text. It begins with the user’s initiation of
the process by inputting the Nepali text they desire to correct. Following this, upon submis-
sion of the text by the user, the system undertakes the correction process. This correction
phase involves identifying and rectifying any grammatical or spelling errors within the text.
Once the correction is complete, the corrected sentence is transmitted to the front end of the
application. In the front end, the corrected sentence is formatted and presented within the
user interface, allowing the user to view the revised text seamlessly. This process ensures
that users can easily input Nepali text, have it corrected efficiently, and promptly view the
corrected version through the application’s interface, enhancing the overall user experience
and aiding in language accuracy.

Figure 5.4: System Sequence Diagram
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5.5 Activity Diagram
This diagram depicts the activities within our system. The user submits the sentence s/he
wishes to have corrected. The system then performs a correction operation in the provided
sentence by the user. Finally, the system sends the corrected text to the user interface.

Figure 5.5: Activity Diagram
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6. Results & Discussion
As discussed in the methodology, the first approach was adopted which was training a vanilla
transformer model for the GEC task. So, the model was initially trained on 10,000 pairs of
correct and incorrect sentences randomly sampled from the corpus. The model was over-
fitted for those sentence pairs which should always be the first task needed to be done for a
language modeling task. It generated output on the same training set with a considerable
tolerance on similar types of errors encountered on it. So we decided to further work on this
idea by letting the vanilla transformer model train on 100,000 pairs of correct and erroneous
sentences sampled from the corpus. The total parameters of the model was 63,574,887 which
is well suited as per the compute resources available. The model was left to train for about
2 days on the 100,000 pairs of sentences for 27 epochs. The training and validation loss is
visualized below:

Figure 6.1: Performance of Vanilla Transformer over training and validation data

But to an utter disappointment, the model performed poorly even on training set and
the performance was even worse on the validation set. To effectively learn the nuances of
the Nepali grammar, the model of this size does not seem to be capable and a much larger
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model will be required to effectively model such nuances for better GEC tasks. But due to
the limitation of enough compute resource available to train such massive model and also
on the humongous corpora we generated, the idea of letting the vanilla transformer model
train on the entire corpus was dropped for now and the alternative approach of using the
pre-trained models and fine-tuning for our custom dataset was adopted.

The two models i.e. MuRIL and NepBERTa were then successfully fine-tuned for 2,568,682
correct labeled sentences and 7,514,122 incorrect labeled sentences and the validation of the
fine-tuned models is done on 365,606 correct labeled sentences and 405,905 incorrect labeled
sentences. This fine-tuning task was done for GED tasks which forms the core of the GEC
engine. The training information for these models is tabulated as follows:

Model Number of
Epochs
Trained

Number of
Trainable

Parameters

Tokenizer
Length

MuRIL 1 237,557,762 197285
NepBERTa 2 109,514,298 30523

Table 6.1: Training information on models.

Also, the performance shown by MuRIL for our GED task is summarized by the table
as follows:

Model Training Loss Validation
Loss

Accuracy

MuRIL 0.242700 0.217756 0.911515

Table 6.2: Performance of MuRIL.

The performance shown by NepBERTa for our GED task is summarized in the table as
follows:

Epoch Training Loss Validation
Loss

Accuracy

1 0.339700 0.385597 0.794744
2 0.277600 0.344654 0.817336

Table 6.3: Performance of NepBERTa.

Despite being trained only for one epoch, MuRIL seemed to perform much better than
NepBERTa being trained for two epochs for GED tasks. This is because the complexity
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of MuRIL was much higher than that of NepBERTa as shown by the number of trainable
parameters in both the models. Thus MuRIL is effectively seen to be able to learn about the
patterns involved in correct and erroneous sentences. Thus for the GED task, which forms
the core of our GEC engine, we decided to use the fine-tuned MuRIL model. For predicting
the [MASK], either of the two pre-trained model can be used which then gives us possible
sentences to be suggested after they have been checked by the GED model for correctness.

An example of the model outputs are shown below:

Input sentence नयाँ संिवधान कायार्न्वयनको लािग िनिँचत समयसीमािभऽै तीन तहको िनवार्चन गर ् ।

Baseline Output नयाँ संिवधान कायार्न्वयनको लािग िनिँचत समयसीमािभऽै तीन तहको िनवार्चन गनुर्पनेर्छ ।

NepBERTa as MLM Output नयाँ संिवधान कायार्न्वयनको लािग िनिँचत समयसीमािभऽै तीन तहको िनवार्चन हुनपुछर् ।

नयाँ संिवधान कायार्न्वयनको लािग िनिँचत समयसीमािभऽै तीन तहको िनवार्चन गयौर् ।

MuRIL as MLM Output नयाँ संिवधान कायार्न्वयनको लािग िनिँचत समयसीमािभऽै तीन तहको िनवार्चन हुनेछ ।

नयाँ संिवधान कायार्न्वयनको लािग िनिँचत समयसीमािभऽै तीन तहको िनवार्चन गयौर्ं ।

Table 6.4: Example Result

The processing time of the sentences depends upon the length of the sentence. Upon
visualizing the time taken for the system to generate the suggestions, it was found that
the time taken by the system to generate suggestions is linearly dependent on the sentence
length. From the corpus, 10 sentences were randomly selected for each sentence length and
the average processing time was calculated for each length. Both the NepBERTa and MuRIL
were evaluated on this metric which is shown in the figure below:
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Figure 6.2: Processing time for MuRIL as MLM

Figure 6.3: Processing time for NepBERTa as MLM
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The slight variations can be seen as the sentence undergoes the tokenization process. In
the tokenization process, a single word can be decomposed into multiple tokens, so more
masked sentences are generated which increases the number of sentences to be processed by
the BERT MLM model hence fluctuating the processing time.
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7. Conclusion
This project is aimed at automating the Nepali GEC tasks which serves as an invaluable
tool for individuals and organizations to improve the quality and accuracy of their written
Nepali text sentence by sentence. The system aims to detect grammatical errors and also
generate possible suggestions and corrections to rectify those issues by leveraging the usage
and the nature of the pre-trained LLMs in suggesting such correct sentences.

Chapter 2 discusses about Nepali language being a low-resource language. In Nepali,
sentences follow the Subject-Object-Verb (SOV) order, reflecting the language’s agglutinat-
ing nature. Research and development in Nepali Grammar Error Correction remain sparse,
with only a few systems focusing on spelling checking rather than comprehensive grammar
correction. We hope that our work on GEC acts as the stepping stone for more and more
research projects in the field of Nepali GEC and in Nepali NLP as a whole.

The BERT Architecture forms the core of our project Ecosystem as it is used for both
GED and GEC tasks. The BERT model for sequence classification makes use of a Dense
layer at the end which helps in performing the GED-related task. This GED model serves a
huge purpose along with the MLM of BERT as MLM for BERT helps generate suggestions by
predicting the [MASK] token and GED helps in identifying new suggestions as grammatically
correct or not.

Chapter 3 explains the feasibility of the project and also about how the system is built
along with the corpus creation. The corpus includes errors limited to seven different types of
grammatical errors including verb inflections, punctuation, homonyms, sentence structure,
and sentence fragment errors. It also includes the possible approaches to go about building
the GEC system which include training the revolutionary transformer model from scratch
or making use of the existing pre-trained BERT models to train for GED tasks and use it
for the GEC engine.

Chapter 4 talks about the Experimental setup for the construction of the project which
included configuring and updating the CUDA® for the NVIDIA® GPU whilst installing the
PyTorch framework for deep learning tasks. Other than that other libraries like transformers
are used for the project. It also includes information about the corpus statistics which gives
about the data distribution to be used throughout training and validation of the models.
Two models MuRIL and NepBERTa were the choices for fine-tuning on GED task and also
use their MLM models to come up with the suggestions. Details on the hyper-parameters
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are also discussed in the section.
The two models were fine-tuned on the custom dataset with MuRIL performing better

than NepBERTa on GED tasks for the project. So it was clear that MuRIL would be used
for the GED purpose. For predicting the masking, MLM of either of the models could be
used and the Result section shows the suggestion provided by both the models. Finally, the
user interface of the project would get the actual suggestions so that s/he would get the idea
on how to rectify the error incurred.
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8. Limitations and Future Enhancement

8.1 Limitations
1. Incomplete Representation of Grammatical Errors: The corpus used for train-

ing may not encompass all types of grammatical errors encountered in Nepali text. Er-
rors such as verb inflection, pronoun misuse, sentence structure inconsistencies, missing
auxiliary or main verbs, punctuation errors, and homophone errors might be inade-
quately represented.

2. Challenges in BERT: As the Masked Language Modeling of BERT is used for the
GEC task, the MLM is only able to predict a single word at a particular instant.
So, sentences with more than a single error is quite unlikely to be corrected by the
GEC engine. Furthermore, As the GED model is the core of the GEC system. If
the GED model classifies the incorrect sentence as correct sentence the GEC system
won’t be able to provide any helpful suggestions to the user. Also, BERT may struggle
with complex linguistic contexts and limited coverage of specialized vocabulary, posing
challenges in accurately correcting sentences.

8.2 Future Enhancements
1. Expansion of Training Corpus: To enhance the model’s effectiveness, efforts should

be made to enrich the training corpus with a more comprehensive range of grammatical
errors encountered in Nepali text. This includes collecting and annotating diverse
examples of errors, covering a wide array of linguistic phenomena.

2. Enhancement of Nepali GEC System Despite creating a large parallel corpus
for Nepali GEC task, due to lack of adequate training resources, we couldn’t take
advantage of the huge corpus for training an end to end model for GEC task. Initially,
we trained a vanilla transformer model for a small dataset, but the results produced
by that model wasn’t satisfactory. So, with the availability of large training resources,
a more robust and complex model can be trained fully on the curated dataset.
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Appendix

Appendix A: Code Snippets

Figure 8.1: Code Snippet For GED
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Figure 8.2: Code Snippet For Creating Masked Sentences
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Figure 8.3: Code Snippet For GEC
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Appendix B: Screenshots of Outputs

Figure 8.4: Output of GED for Correct Sentence

Figure 8.5: Output of GED for Inccorrect Sentence

Figure 8.6: Output of GEC Using MuRIL as MLM Model
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Figure 8.7: Output of GEC Using NepBERTa as MLM Model

Figure 8.8: Output of GEC When Grammatically Correct Sentence As Input

Figure 8.9: Output of GEC When Model Doesn’t Generate Any Suggestion
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